Monsieur Dupont désire acheter une voiture neuve. Il hésite entre une motorisation diesel et une motorisation essence. Pour faire son choix il décide de faire un comparatif sur les prix de revient.

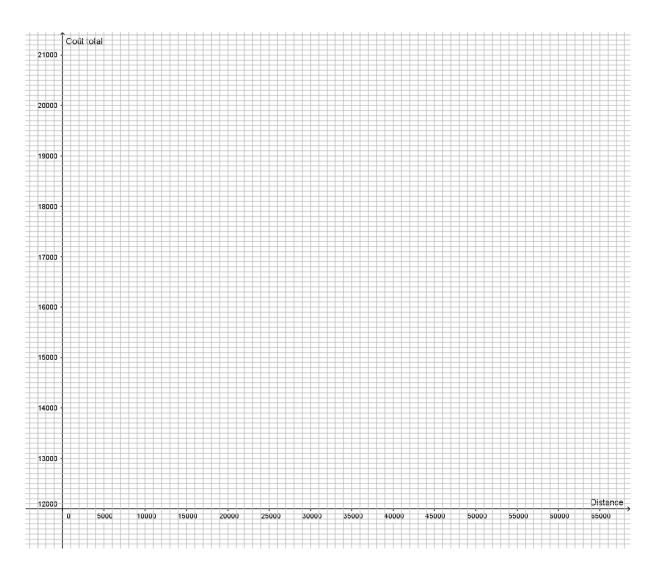
Prix d'achat :

Modéle	Moteur	Puissances CV	Puissance administrative.	Prix TTC (€)
Modèle 1 : essence	1,4 e 16 V	90	6	13300
Modèle 2 : diesel	1,4 HDI	70	6	14200

Consommations en carburant :

	Modèle 1 : essence	Modèle 2 : diesel
Consommation cycle mixte (L/100km)	6,4	4,5

Prix des carburants :



Problématique:

M. Dupond pense garder son véhicule au moins 5 ans et parcourt en moyenne 4000 km par an. Quel est le véhicule qui aura le prix de revient le plus bas ?

Calculer, en L, le volume des modèles	de carburant	nécessaire po	our parcourir	· 1000 km a	vec
En déduire le coût en carb	ourant pour p	arcourir 1000	km avec les	deux modè	eles.
Calculer le coût total pour	parcourir 10	000 km avec	chacun des	modèles.	
Calculer le coût total pour	parcourir 50	000 km avec	chacun des	modèles	
3. Compléter les tableaux :					
Modèle1		100	1000	10000	50000
Distance parcourue, en km Volume de carburant, en L	0	6,4	1000	10000	30000
Coût en carburant, en euros		0,4			
Coût total, en euros					
	l .	l .	l —	L	
Modèle2					
Distance parcourue, en km	0	100	1000	10000	50000
Volume de carburant, en L					
Coût en carburant, en euros					
Coût total, en euros					

4. Représentation graphique

5. Réponse à la Problématique :

>	A partir de combien de km un modèle est-il plus économique que l'autre ?
>	Monsieur Dupont va peut-être changer de travail et devra alors parcourir en moyenne
	10000 km par an pendant 5 ans.
	Indiquer le modèle qu'il devra alors choisir pour faire des économies.
	Justifier votre réponse

6. On admettra que les coûts de revient de chaque modèle peuvent être						
représentés par les fonctions suivantes :						
f(x) = 0.09274 x + 13300 $g(x) = 0.0505 x + 14200$						
Cocher la fonction correspondant à chaque modèle :						
Modèle 1 : essence : $\Box 0.09274 \ x + 13\ 300$ $\Box 0.0505 \ x + 14\ 200$						
Modèle 2 : diesel : $\Box 0.09274 x + 13300 \Box 0.0505 x + 14200$						
7. Représenter chaque fonction précédente à l'aide d'un outil numérique et déterminer graphiquement à partir de combien de km les coûts de revient des deux modèles sont-ils égaux :						